Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Astronomyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Astronomy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Astronomy
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MPG.PuRe
Article . 2022
Data sources: MPG.PuRe
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Nature Astronomy
Article . 2022 . Peer-reviewed
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b

Authors: Bibiana Prinoth; H. Jens Hoeijmakers; Daniel Kitzmann; Elin Sandvik; Julia V. Seidel; Monika Lendl; Nicholas W. Borsato; +17 Authors

Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b

Abstract

Ultra-hot Jupiters are a class of highly irradiated planets that have fundamentally changed our view of planetary systems. Located in very short orbits around their host stars, ultra-hot Jupiters are subject to extreme conditions with permanently irradiated hot day sides and cooler, permanently dark night sides. The hot temperature regime causes a variety of different effects, such as the thermal dissociation of many molecules, partial thermal ionisation of atoms, and the occurrence of thermal inversions caused by metals and their oxides. The temperature of an atmosphere decreases with increasing altitude unless there is a shortwave absorber that causes a temperature inversion. While this absorber is known to be ozone in Earth's atmosphere, titanium oxide and vanadium oxide are predicted to be shortwave observers in the atmospheres of ultra-hot Jupiters. Using ground-based, high-resolution spectroscopy, we have been able to study the atmosphere of WASP-189 b, an ultra-hot Jupiter with an equilibrium temperature of 2600 K. By applying the cross-correlation technique to five independent observations, we have detected titanium oxide, as well as various different metals, including neutral and singly ionised iron and titanium, as well as chromium, magnesium, vanadium and manganese. Our detections reveal the presence of dynamical effects that show up in deviations from the true orbital and systemic velocities. We interpret these as a consequence of spatial gradients in their chemical abundances, suggesting their existence in different regions or dynamical regimes. Our findings are direct observational evidence for the 3D thermochemical stratification of an exoplanet atmosphere derived from high-resolution ground-based spectroscopy. As more and more ultra-hot Jupiters are observed, our observations show empirically that successful interpretation of observations of this type of planet requires that the theory of exoplanet atmospheres accounts for the 3D nature of these atmospheres and that insights from global circulation models, atmospheric chemistry and radiative transfer are unified.

Country
Italy
Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Atmospheres, Exoplanets, Cross-correlation, FOS: Physical sciences, High-resolution spectroscopy, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 16
  • 5
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
92
Top 1%
Top 10%
Top 1%
5
16
Green
bronze