
This paper considers the joint repair and restoration of the electrical power system after significant disruptions caused by natural disasters. This problem is computationally challenging because, when the goal is to minimize the size of the blackout, it combines a routing and a power restoration component, both of which are difficult on their own. The joint repair/restoration problem has been successfully approached with a 3-stage decomposition, whose last step is a multiple-vehicle, pickup-and-delivery routing problem with precedence and capacity constraints whose goal is to minimize the sum of the delivery times (PDRPPCCDT). Experimental results have shown that the PDRPPCCDT is a bottleneck and this paper proposes a Randomized Adaptive Vehicle Decomposition (RAVD) to scale to very large power outages. The RAVD approach is shown to produce significant computational benefits and provide high-quality results for infrastructures with more than 24000 components and 1200 damaged items, giving rise to PDRPPCCDT with more than 2500 visits.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
