Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mineralsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Minerals
Other literature type . 2019
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Minerals
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Minerals
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2019
Data sources: UCL Discovery
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploratory Analysis of Provenance Data Using R and the Provenance Package

Authors: Pieter Vermeesch;

Exploratory Analysis of Provenance Data Using R and the Provenance Package

Abstract

The provenance of siliclastic sediment may be traced using a wide variety of chemical, mineralogical and isotopic proxies. These define three distinct data types: (1) compositional data such as chemical concentrations; (2) point-counting data such as heavy mineral compositions; and (3) distributional data such as zircon U-Pb age spectra. Each of these three data types requires separate statistical treatment. Central to any such treatment is the ability to quantify the ‘dissimilarity’ between two samples. For compositional data, this is best done using a logratio distance. Point-counting data may be compared using the chi-square distance, which deals better with missing components (zero values) than the logratio distance does. Finally, distributional data can be compared using the Kolmogorov–Smirnov and related statistics. For small datasets using a single provenance proxy, data interpretation can sometimes be done by visual inspection of ternary diagrams or age spectra. However, this no longer works for larger and more complex datasets. This paper reviews a number of multivariate ordination techniques to aid the interpretation of such studies. Multidimensional Scaling (MDS) is a generally applicable method that displays the salient dissimilarities and differences between multiple samples as a configuration of points in which similar samples plot close together and dissimilar samples plot far apart. For compositional data, classical MDS analysis of logratio data is shown to be equivalent to Principal Component Analysis (PCA). The resulting MDS configurations can be augmented with compositional information as biplots. For point-counting data, classical MDS analysis of chi-square distances is shown to be equivalent to Correspondence Analysis (CA). This technique also produces biplots. Thus, MDS provides a common platform to visualise and interpret all types of provenance data. Generalising the method to three-way dissimilarity tables provides an opportunity to combine several datasets together and thereby facilitate the interpretation of ‘Big Data’. This paper presents a set of tutorials using the statistical programming language R. It illustrates the theoretical underpinnings of compositional data analysis, PCA, MDS and other concepts using toy examples, before applying these methods to real datasets with the provenance package.

Country
United Kingdom
Keywords

sediment, statistics, provenance, point counting, zircon, petrography., heavy minerals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Green
gold