Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete Mathematics
Article . 2026 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets

Authors: Marthe Bonamy; Oscar Defrain; Piotr Micek; Lhouari Nourine;

Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets

Abstract

Enumerating minimal transversals in a hypergraph is a notoriously hard problem. It can be reduced to enumerating minimal dominating sets in a graph, in fact even to enumerating minimal dominating sets in an incomparability graph. We provide an output-polynomial time algorithm for incomparability graphs whose underlying posets have bounded dimension. Through a different proof technique, we also provide an output-polynomial algorithm for their complements, i.e., for comparability graphs of bounded dimension posets. Our algorithm for incomparability graphs is based on flashlight search and relies on the geometrical representation of incomparability graphs with bounded dimension, as given by Golumbic et al. in 1983. It runs with polynomial delay and only needs polynomial space. Our algorithm for comparability graphs is based on the flipping method introduced by Golovach et al. in 2015. It performs in incremental-polynomial time and requires exponential space. In addition, we show how to improve the flipping method so that it requires only polynomial space. Since the flipping method is a key tool for the best known algorithms enumerating minimal dominating sets in a number of graph classes, this yields direct improvements on the state of the art.

23 pages, 5 figures

Keywords

FOS: Computer and information sciences, Data Structures and Algorithms, Discrete Mathematics (cs.DM), Discrete Mathematics, Combinatorics, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green