Downloads provided by UsageCounts
arXiv: 2109.05295
handle: 2117/363512 , 10261/261816
We show that the contact dynamics obtained from the Herglotz variational principle can be described as a constrained nonholonomic or vakonomic ordinary Lagrangian system depending on a dissipative variable with an adequate choice of one constraint. As a consequence, we obtain the dynamics of contact nonholonomic and vakonomic systems as an ordinary variational calculus with constraints on a Lagrangian with a dissipative variable. The variation of the energy and the other dissipative quantities is also obtained, giving the usual results.
Holonomic and vakonomic systems, High Energy Physics - Theory, and methods, Classificació AMS::53 Differential geometry::53D Symplectic geometry, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], Geometria simplèctica, Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry, Mecànica, Variational methods for problems in mechanics, Variational methods, contact manifolds, Contact manifolds (general theory), Hamilton, and nonholonomic systems, Lagrangian, Mathematical Physics, Contact systems, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial, Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics, approaches, :Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics [Àrees temàtiques de la UPC], Symplectic geometry, :37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems [Classificació AMS], Contact manifolds, Mathematical Physics (math-ph), Sistemes de, Contact mechanics, Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods, holonomic and vakonomic systems, contact, Constrained dynamics, Dirac's theory of constraints, FOS: Physical sciences, Mechanics, Lagrangian and Hamiltonian formalisms, contact geometry, contact mechanics, :Matemàtiques i estadística::Geometria::Geometria diferencial [Àrees temàtiques de la UPC], Hamiltonian systems, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems, :70 Mechanics of particles and systems::70G General models, approaches, and methods [Classificació AMS], variational, Classificació AMS::70 Mechanics of particles and systems::70G General models, :53 Differential geometry::53D Symplectic geometry, contact geometry [Classificació AMS], Classificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods, Primary: 37J55, 53D10, 70G75. Secondary: 37J06, 70G45, 70H03, Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics, High Energy Physics - Theory (hep-th), Hamilton, Sistemes de, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Other variational principles in mechanics, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian
Holonomic and vakonomic systems, High Energy Physics - Theory, and methods, Classificació AMS::53 Differential geometry::53D Symplectic geometry, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], Geometria simplèctica, Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry, Mecànica, Variational methods for problems in mechanics, Variational methods, contact manifolds, Contact manifolds (general theory), Hamilton, and nonholonomic systems, Lagrangian, Mathematical Physics, Contact systems, Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial, Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics, approaches, :Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics [Àrees temàtiques de la UPC], Symplectic geometry, :37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems [Classificació AMS], Contact manifolds, Mathematical Physics (math-ph), Sistemes de, Contact mechanics, Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods, holonomic and vakonomic systems, contact, Constrained dynamics, Dirac's theory of constraints, FOS: Physical sciences, Mechanics, Lagrangian and Hamiltonian formalisms, contact geometry, contact mechanics, :Matemàtiques i estadística::Geometria::Geometria diferencial [Àrees temàtiques de la UPC], Hamiltonian systems, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems, :70 Mechanics of particles and systems::70G General models, approaches, and methods [Classificació AMS], variational, Classificació AMS::70 Mechanics of particles and systems::70G General models, :53 Differential geometry::53D Symplectic geometry, contact geometry [Classificació AMS], Classificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods, Primary: 37J55, 53D10, 70G75. Secondary: 37J06, 70G45, 70H03, Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics, High Energy Physics - Theory (hep-th), Hamilton, Sistemes de, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Other variational principles in mechanics, Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 114 | |
| downloads | 162 |

Views provided by UsageCounts
Downloads provided by UsageCounts