
pmid: 26549449
The central question in stem cell regulation is how the balance between self-renewal and differentiation is controlled at the molecular level. This study uses germline stem cells (GSCs) in the Drosophila ovary to demonstrate that the Drosophila CCR4 homolog Twin is required intrinsically to promote both GSC self-renewal and progeny differentiation. Twin/CCR4 is one of the two catalytic subunits in the highly conserved CCR4-NOT mRNA deadenylase complex. Twin works within the CCR4-NOT complex to intrinsically maintain GSC self-renewal, at least partly by sustaining E-cadherin-mediated GSC-niche interaction and preventing transposable element-induced DNA damage. It promotes GSC progeny differentiation by forming protein complexes with differentiation factors Bam and Bgcn independently of other CCR4-NOT components. Interestingly, Bam can competitively inhibit the association of Twin with Pop2 in the CCR4-NOT complex. Therefore, this study demonstrates that Twin has important intrinsic roles in promoting GSC self-renewal and progeny differentiation by functioning in different protein complexes.
Male, QH301-705.5, Stem Cells, Mitosis, Cell Differentiation, Cdh1 Proteins, Drosophila melanogaster, Germ Cells, Ribonucleases, Bone Morphogenetic Proteins, Animals, Drosophila Proteins, Female, Biology (General), Stem Cell Niche, Signal Transduction
Male, QH301-705.5, Stem Cells, Mitosis, Cell Differentiation, Cdh1 Proteins, Drosophila melanogaster, Germ Cells, Ribonucleases, Bone Morphogenetic Proteins, Animals, Drosophila Proteins, Female, Biology (General), Stem Cell Niche, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
