Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Reaction Kinetics Me...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reaction Kinetics Mechanisms and Catalysis
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst

Authors: Nicholas C. C. Breckwoldt; Gregory S. Smith; Percy Van der Gryp; Neill J. Goosen;

Kinetic evaluation of the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst

Abstract

Reaction engineering kinetics for the hydroformylation of the post-metathesis product 7-tetradecene using a heterobimetallic rhodium-ferrocenyl Schiff base derived precatalyst was investigated with variation of reaction temperature (85–105 °C), precatalyst loading (0.25–0.52 mM), carbon monoxide partial pressures (20–40 bar) and hydrogen partial pressures (20–40 bar). The experimental product-time distributions for the parallel hydroformylation and isomerization reaction system are well described by four interdependent pseudo first-order differential mole balance equations. The effects of temperature in the Arrhenius equation, precatalyst concentration, carbon monoxide and hydrogen partial pressures have been incorporated into a phenomenological mechanism-based rate equation. The rate of hydroformylation is first order in alkene, carbon monoxide and hydrogen, with fractional dependence in precatalyst concentration. The activation energy for the hydroformylation reaction was calculated to be 62 kJ mol−1, which is comparable to that determined for the commercialized phosphorus-modified catalyst systems.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!