Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Robert Koch Institut...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Robert Koch Institute: Publications
Part of book or chapter of book . 2021
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Publikationsserver des Robert Koch-Instituts
Part of book or chapter of book . 2021 . Peer-reviewed
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Population Biology and Comparative Genomics of Campylobacter Species

Authors: Epping, Lennard; Antão, Esther-Maria; Semmler, Torsten;

Population Biology and Comparative Genomics of Campylobacter Species

Abstract

AbstractThe zoonotic pathogen Campylobacter is the leading cause for bacterial foodborne infections in humans. Campylobacters are most commonly transmitted via the consumption of undercooked poultry meat or raw milk products. The decreasing costs of whole genome sequencing enabled large genome-based analyses of the evolution and population structure of this pathogen, as well as the development of novel high-throughput molecular typing methods. Here, we review the evolutionary development and the population diversity of the two most clinically relevant Campylobacter species; C. jejuni and C. coli. The state-of-the-art phylogenetic studies showed clustering of C. jejuni lineages into host specialists and generalists with coexisting lifestyles in chicken and livestock-associated hosts, as well as the separation of C. coli isolates of riparian origin (waterfowl, water) from C. coli isolated from clinical and farm-related samples. We will give an overview of recombination between both species and the potential impact of horizontal gene transfer on host adaptation in Campylobacter. Additionally, this review briefly places the current knowledge of the population structure of other Campylobacter species such as C. lari, C. concisus and C. upsaliensis into perspective. We also provide an overview of how molecular typing methods such as multilocus sequence typing (MLST) and whole genome MLST have been used to detect and trace Campylobacter outbreaks along the food chain.

Related Organizations
Keywords

ddc:610, 570, population genomics, public health, 610, Campylobacter, Genomics, bacterial evolution, Campylobacter jejuni, host associations, Campylobacter Infections, Humans, 610 Medizin und Gesundheit, Phylogeny, Multilocus Sequence Typing, ddc: ddc:610

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid