Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Phylogenet...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Phylogenetics and Evolution
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resolving the systematic positions of enigmatic taxa: Manipulating the chloroplast genome data of Saxifragales

Authors: Wenpan Dong; Chao Xu; Ping Wu; Tao Cheng; Jing Yu; Shiliang Zhou; De-Yuan Hong;

Resolving the systematic positions of enigmatic taxa: Manipulating the chloroplast genome data of Saxifragales

Abstract

Accurately resolving the phylogeny of enigmatic taxa is always a challenge in phylogenetic inference. Such uncertainties could be due to systematic errors or model violations. Here, we provide an example demonstrating how these factors affect the positioning of Paeoniaceae within Saxifragales based on chloroplast genome data. We newly assembled 14 chloroplast genomes from Saxifragales, and by combining these genomes with those of 63 other angiosperms, three datasets were assembled to test different hypotheses proposed by recent studies. These datasets were subjected to maximum parsimony, maximum likelihood and Bayesian analyses with site-homogeneous/heterogeneous models, different data partitioning strategies, and the inclusion/exclusion of weak phylogenetic signals. Three datasets exhibited remarkable heterogeneity among sites and among taxa of Saxifragales. Phylogenetic analyses under homogeneous models or maximum parsimony showed a closer relationship of Paeoniaceae with herbaceous families in the order. Data partitioning strategies did not change the general tree topology. However, PhyloBayes analysis under the CAT+GTR model resulted in a relationship closer to woody families. We conclude that although genomic data significantly increase the phylogenetic resolution of enigmatic taxa with high support, the phylogenetic results inferred from such data might be analysis or signal dependent. The analytical pipeline outlined here combines phylogenomic inference methods with evaluation of lineage-specific rates of substitution, model selection, and assessment of systematic error. These methods would be applicable to resolve similar difficult questions in the tree of life.

Related Organizations
Keywords

Likelihood Functions, Bayes Theorem, Genome, Chloroplast, Saxifragales, Phylogeny, Trees

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?