
In a recent paper (Bull. Austral. Math. Soc. 13 (1975), 241–245), Tarafdar has considered nonexpansive self mappings on a subset X of a locally convex vector space E and proved an extension to E of a theorem of Göhde. The purpose of this paper is to show that the condition f: X → X, in Göhde-Tarafdar's Theorem in the above paper, may be weakened to f: X → E with f(∂X) ⊆ X. As a consequence, it is further shown that an extension to E of a well-known common fixed point theorem of Belluce and Kirk due to Tarafdar remains true on domains that are not necessarily bounded or quasi-complete.
Fixed-point theorems
Fixed-point theorems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
