Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Physics : Conference Series
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Primary Ionization Simulation for Different Gas Mixtures

Authors: R Kanishka; Supratik Mukhopadhyay; Nayana Majumdar; Sandip Sarkar;

Primary Ionization Simulation for Different Gas Mixtures

Abstract

The primary ionization in a gas mixture is crucial in nuclear and particle physics experiments. In many particle physics experiments, the primary ionization is utilized in understanding the charge density and discharge formation studies. We present the simulation of primary ionization in argon based gas mixtures to get the number of primaries, energy and spatial information with geant4 and heed++ toolkits that have been used to simulate the passage of particles through the matter. The geant4 toolkit has an advantage of obtaining the particle information like energy deposition and position co-ordinates after each step i.e., at which the particle has done some interactions in a complex, realistic, three-dimensional geometry. These steps generate each interactions after computing the cross-sections of physics processes that were taken into account for this simulation in a gas volume. The number of primaries generated with the geant4 toolkit were also compared with those obtained using heed+ +. Alpha and muons were simulated to study the primary ionization. A similar study of primary ionization was carried out with 55Fe which is radioactive in nature and captures electron. 55Mn (X-rays), νe, auger electrons and gammas were produced in this process. Gamma simulation has also been carried out. The responses of alpha, muon, 55Fe and gamma in the argon based gas mixtures were found to be distinct due to their different properties.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold