Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FakeKG: A Knowledge Graph of Fake Claims for Improving Automated Fact-Checking (Student Abstract)

Authors: Gautam Kishore Shahi;

FakeKG: A Knowledge Graph of Fake Claims for Improving Automated Fact-Checking (Student Abstract)

Abstract

False information could be dangerous if the claim is not debunked timely. Fact-checking organisations get a high volume of claims on different topics with immense velocity. The efficiency of the fact-checkers decreases due to 3V problems volume, velocity and variety. Especially during crises or elections, fact-checkers cannot handle user requests to verify the claim. Until now, no real-time curable centralised corpus of fact-checked articles is available. Also, the same claim is fact-checked by multiple fact-checking organisations with or without judgement. To fill this gap, we introduce FakeKG: A Knowledge Graph-Based approach for improving Automated Fact-checking. FakeKG is a centralised knowledge graph containing fact-checked articles from different sources that can be queried using the SPARQL endpoint. The proposed FakeKG can prescreen claim requests and filter them if the claim is already fact-checked and provide a judgement to the claim. It will also categorise the claim's domain so that the fact-checker can prioritise checking the incoming claims into different groups like health and election. This study proposes an approach for creating FakeKG and its future application for mitigating misinformation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!