Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Fluid Mec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Fluid Mechanics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flow–structure interaction of a starting jet through a flexible circular nozzle

Authors: Daehyun Choi; Hyungmin Park;

Flow–structure interaction of a starting jet through a flexible circular nozzle

Abstract

In the present study, the flow–structure interaction of a starting jet through a flexible nozzle is experimentally investigated, with a focus on the optimal flexibility for thrust generation. Water slug is impulsively accelerated through a cylindrical nozzle, fabricated with silicone rubber of varying flexibility. In general, the flexible nozzle modifies the vortical structure of the jet and augments the thrust of the starting jet. The measurement of nozzle surface deformation revealed that a back-and-forth wave propagation on the nozzle surface is responsible for the jet-vortex evolution augmenting the thrust generation. Combining the hydrodynamic conservation equations and the linearized shell theory, we also formulated the governing equations, dominated by two relevant dimensionless parameters: the effective acceleration time of the jet ( $\varPi _0$ ) and the effective nozzle stiffness ( $\varPi _1$ ). Asymptotic analysis of the equation showed that the dimensionless wave speed ( $\hat {c}$ ) is expressed as $\hat {c}=(\varPi _{0}^{2}\varPi _{1}/2)^{0.5}$ , and the jet momentum is maximized at $\hat {c}=\hat {c}_{crit}$ ( $\simeq 3.0$ ), the condition at which the release of elastic energy stored during nozzle contraction to the jet is synchronized with the instant of termination of jet acceleration. While $\hat {c}=\hat {c}_{crit}$ , the achievable maximum jet velocity decreases with the effective acceleration time of the jet ( $\varPi _0$ ), which is attributed to the reduced speed of the surface wave by the flow inside the nozzle.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
hybrid