Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Python Code for Detecting True Repeating Earthquakes from Self-Similar Waveforms (FINDRES)

Authors: Monica Sugan; Stefano Campanella; Alessandro Vuan; Nader Shakibay Senobari;

A Python Code for Detecting True Repeating Earthquakes from Self-Similar Waveforms (FINDRES)

Abstract

AbstractSeismic data are generally scrutinized for repeating earthquakes (REs) to evaluate slip rates, changes in the mechanical properties of a fault zone, and accelerating nucleation processes in foreshock and aftershock sequences. They are also used to study velocity changes in the medium, earthquake physics and prediction, and for constraining creep rate models at depth. For a robust detection of repeaters, multiple constraints and different parameter configurations related to waveform similarity have been proposed to measure cross-correlation values at a local seismic network and evaluate the location of overlapping sources. In this work, we developed a Python code to identify REs (FINDRES), inspired by previous literature, which combines both seismic waveform similarity and differential S-P travel time measured at each seismic station. A cross-spectral method is applied to evaluate precise differential arrival travel times between earthquake pairs, allowing a subsample precision and increasing the capacity to resolve an overlapping common source radius. FINDRES is versatile and works with and without P- and S-wave phase pickings, and has been validated using synthetic and real data, and provides reliable results. It would contribute to the implementation of open-source Python packages in seismology, supporting the activities of researchers and the reproducibility of scientific results.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!