Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of permeability on the pressure regime in 2D outcrop-to-outcrop submarine hydrothermal flow models

Authors: Isabel Kremin; Zhikui Guo; Lars Rüpke;

The effect of permeability on the pressure regime in 2D outcrop-to-outcrop submarine hydrothermal flow models

Abstract

The significant discrepancy between the observed conductive heat flow and predictions by thermal models for oceanic lithosphere younger than 50 Ma is generally interpreted to result from hydrothermal circulation between basement outcrops. Numerical simulations of fluid flow between such outcrops performed in previous studies revealed that establishing horizontal pressure gradients to sustain a hydrothermal siphon requires high aquifer permeabilities and a contrast in the outcrops’ transmittance, which is the product of the outcrop permeability and the area of outcrop exposure. However, most previous studies focused on the model parameters needed to sustain a hydrothermal siphon, while the physical processes that create the horizontal pressure gradients in the first place remain poorly constrained. In order to shed more light on the physics behind outcrop-to-outcrop flow, a simple synthetic 2D model of two outcrops connected by a permeable aquifer was set up. Fluid flow modelling was done by using hydrothermalFoam, a hydrothermal transport model, that is based on the open-source C++ computational fluid dynamics toolbox OpenFOAM. Our initial simulations focus on variations of the permeability of the outcrops and the aquifer. The results reveal two key points that are essential to generate a flow: First, the outcrops permeability has a fundamental effect on its average pressure. High permeabilities lead to a rather "cold" hydrostatic pressure regime with lower temperatures and hence higher average pressures. Lower outcrop permeabilities are accompanied with a rather "warm" hydrostatic pressure regime characterized by higher temperatures and lower average pressures. Secondly, fluid convection in the aquifer is necessary to establish a siphon flow. Therefore, the aquifer permeability must be sufficiently high to overcome Darcy resistance and yet low enough to prevent the flow from being solely diffusive.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!