Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the L...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the Linguistic Society of America
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

“One does not simply categorize a meme”: A dual classification system for visual-textual internet memes

Authors: Leslie Cochrane; Alexandra Johnson; Aubrey Lay; Ginny Helmandollar;

“One does not simply categorize a meme”: A dual classification system for visual-textual internet memes

Abstract

Internet memes are a popular and long-standing genre of discourse on social media platforms, used to express everything from emotional states to political opinions. Dancygier and Vandelanotte (2017) define internet memes as intertextual, multimodal discourses that combine text with images. In order to capture and compare these rapidly-changing discourses, we propose a descriptive dual classification system for memes with two components: meme composition and multimodal quality. Meme composition categorizes memes by their structure—beyond the individual images they employ—and thus explains how memes recontextualize images and text to create new meanings. Multimodal quality serves to describe the way(s) that the text interacts with the image in the meme: as a caption, label, and/or utterance. Combining one meme composition with one or more multimodal qualities classifies an individual meme structurally and provides a basis for explaining its intertextuality, modality, and meaning-making. We apply the dual classification system to English language data collected in its naturally-occurring context on the social media platform Instagram from 2019 to 2021. Analysis of these data shows that the dual classification system is a flexible and robust approach which provides a vocabulary for discussing the creative agency exerted by meme creators in a wide range of communities. We argue that the dual classification system affords researchers the ability to study memes linguistically across a variety of platforms and over time.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold