
Los grafos de conocimiento son considerados actualmente una herramienta eficaz para representar información en un formato estructurado y legible por computadores. La construcción de estos grafos suele realizarse mediante la creación de un conjunto de reglas de mapeo que relacionan los conceptos de una ontología con los campos de la fuente de datos como, por ejemplo, las columnas de un archivo CSV. El proceso de construcción y actualización de estas estructuras puede ser lento, incluso cuando se utilizan motores de construcción de grafos que implementan diferentes optimizaciones. Actualmente estos motores no tienen en cuenta las versiones anteriores del mismo grafo cuando se añaden o eliminan datos de la fuente. Por este motivo la actualización de un grafo de conocimiento se lleva a cabo eliminando el grafo y construyéndolo desde cero. En esta tesis se propone un conjunto de técnicas y sus correspondientes implementaciones para actualizar con eficiencia un grafo de conocimiento que ha sido generado previamente. ABSTRACT Knowledge graphs (KG) are currently considered as a powerful tool for representing knowledge in a structured and machine-readable format. The construction is usually performed by creating a set of mapping rules that relate the concepts of an ontology with the input data source fields (e.g., columns of a CSV file). The process of constructing and updating a large KG can be time consuming, even when utilizing a highly optimized Knowledge Graph Construction (KGC) engine. Current optimizations do not consider previous versions of the same KG when adding or removing data from the source. Therefore, updating a KG is implemented as : i) dropping the KG, and ii) completely generating the knowledge graph from scratch. In this thesis, we propose a set of techniques and its corresponding implementations to efficiently update a KG that has been previously created.
Informática
Informática
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
