Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Impact of ruminal pH on enteric methane emissions.

Authors: M, Hünerberg; S M, McGinn; K A, Beauchemin; T, Entz; E K, Okine; O M, Harstad; T A, McAllister;

Impact of ruminal pH on enteric methane emissions.

Abstract

The objective of this study was to determine the impact of ruminal pH on methane (CH4) emission from beef cattle. Ruminal pH and CH4 data were generated in 2 experiments using 16 beef heifers offered high-forage (55% barley silage) or high-grain (92% concentrate; DM basis) diets. Both experiments were designed as a replicated 4 × 4 Latin square with 4 periods and 4 dietary treatments. Methane was measured over 4 consecutive days using open-circuit respiratory chambers with each chamber housing 2 heifers. The ruminal pH of individual heifers was measured using indwelling pH loggers. The mean ruminal pH and CH4 emission (g/h) of 2 heifers in every chamber were summarized in 30-min blocks. Even though rumen methanogens have been described to be inhibited by a pH 0.05). Daily mean CH4 emission (g/d) and ruminal pH were only mildly correlated (r2 = 0.27; P < 0.05), suggesting that additional factors, such as increased propionate formation or passage rate, account for the lower CH4 emissions from cattle fed high-grain as compared to high-forage diets. Lowering ruminal pH alone is, therefore, not an effective CH4-mitigation strategy. Mechanisms permitting methanogens to survive episodes of low-ruminal pH might include changes in community structure toward more pH-tolerant strains or sequestration into microenvironments within biofilms or protozoa where methanogens are protected from low pH.

Keywords

Silage, Rumen, Hordeum, Hydrogen-Ion Concentration, Animal Feed, Diet, Animals, Cattle, Female, Edible Grain, Methane

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!