
The objective of this study was to determine the impact of ruminal pH on methane (CH4) emission from beef cattle. Ruminal pH and CH4 data were generated in 2 experiments using 16 beef heifers offered high-forage (55% barley silage) or high-grain (92% concentrate; DM basis) diets. Both experiments were designed as a replicated 4 × 4 Latin square with 4 periods and 4 dietary treatments. Methane was measured over 4 consecutive days using open-circuit respiratory chambers with each chamber housing 2 heifers. The ruminal pH of individual heifers was measured using indwelling pH loggers. The mean ruminal pH and CH4 emission (g/h) of 2 heifers in every chamber were summarized in 30-min blocks. Even though rumen methanogens have been described to be inhibited by a pH 0.05). Daily mean CH4 emission (g/d) and ruminal pH were only mildly correlated (r2 = 0.27; P < 0.05), suggesting that additional factors, such as increased propionate formation or passage rate, account for the lower CH4 emissions from cattle fed high-grain as compared to high-forage diets. Lowering ruminal pH alone is, therefore, not an effective CH4-mitigation strategy. Mechanisms permitting methanogens to survive episodes of low-ruminal pH might include changes in community structure toward more pH-tolerant strains or sequestration into microenvironments within biofilms or protozoa where methanogens are protected from low pH.
Silage, Rumen, Hordeum, Hydrogen-Ion Concentration, Animal Feed, Diet, Animals, Cattle, Female, Edible Grain, Methane
Silage, Rumen, Hordeum, Hydrogen-Ion Concentration, Animal Feed, Diet, Animals, Cattle, Female, Edible Grain, Methane
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
