
Metallothioneins (MTs) have been detected in livers and kidneys of 10 marine mammals species (Pinnipeds and Odontocetes). Characterization of renal MTs of striped dolphin has shown that the protein has two isoforms (MT-1 and MT-2) with a molecular weight estimated around 6,800. MT concentrations also vary widely in marine mammals tissues (from 58 to 1,200 microg x g(-1) ww) underlying the numerous parameters involved: physiological status, pregnancy, age, diet. The participation of this protein in metal detoxification has been investigated since high levels of cadmium (Cd) and mercury (Hg) have been measured in livers and kidneys of marine mammals. It has been suggested that those animals can mitigate at least in part, the toxic effects of Cd and Hg through binding to MTs. The percentage of the cytosolic Cd bound to MTs can reach almost 100%. On the contrary, the percentage of hepatic and renal Hg bound to MT is very low (generally less than 10%) and this metal is mainly associated with selenium (HgSe) under a detoxified form in the insoluble fraction of the tissues. MTs appear to play a minor role in the binding and detoxification of Hg by marine mammals. On the contrary, close and dynamic interactions occur between Cd and MTs. Cytosolic MTs appear as a potential short term way of detoxification of Cd accumulated from diet. Long-term detoxification would imply a sequestration of the metal under a precipitated form (e.g. in lysosomes).
Sciences aquatiques & océanologie, metallothioneins, metals, Aquatic sciences & oceanology, Mercury, Kidney, Life sciences, Cytosol, Liver, Sciences du vivant, Animals, Metallothionein, Cetacea, marine mammals, Cadmium, Protein Binding
Sciences aquatiques & océanologie, metallothioneins, metals, Aquatic sciences & oceanology, Mercury, Kidney, Life sciences, Cytosol, Liver, Sciences du vivant, Animals, Metallothionein, Cetacea, marine mammals, Cadmium, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 62 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
