Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

Very low Earth orbit constellations for Earth observation

Authors: Crisp, Nicholas H.; McGrath, Ciara N.; Roberts, Peter C.E; García-Almiñana, Daniel; Rodríguez Donaire, Silvia; Sureda Anfres, Miquel;

Very low Earth orbit constellations for Earth observation

Abstract

Very Low Earth Orbits (VLEOs), those below 450 km, present a number of benefits and challenges for the development and operation of Earth observation spacecraft at both the system and mission level. This paper examines the design of constellations of satellites for operation in VLEO for Earth observation considering both system and mission level trade-offs. The resulting analysis identifies general design trends and proposes suitable mission architectures for Earth observation from VLEO. The principal benefit for satellites operating in VLEO is that the reduction in the distance to the Earth’s surface allows better imaging resolution to be achieved using smaller and less powerful payloads. This has corresponding benefits for the system mass and cost. However, the sustained and controlled operation of spacecraft in VLEO is challenging due to the increased atmospheric density at these altitudes, which increases propulsive and attitude control requirements. Technologies to facilitate the commercially viable operation of spacecraft in VLEO are currently being developed, for example materials to facilitate drag-reduction and aerodynamic control and atmosphere-breathing electric propulsion systems (ABEP), each of which influence the design of other sub-systems, requiring, for example, varying levels of power or new geometric considerations. At the mission level, the reduction in altitude has a generally negative influence on the coverage and revisit characteristics of a given satellite. However, deployment of these satellites in constellations can provide improvements in the overall system metrics. Systems operating in VLEO may also benefit from improved launch vehicle capability and assured end-of-life deorbit. It is clear, therefore, that important and non-intuitive trade-offs between the satellite platform design, constellation configuration, and total cost arise in the design of these systems. This paper uses combined platform-level system modelling and mission analysis to explore the design of constellations of satellites in VLEO for Earth observation and demonstrates the necessity of a holistic approach to mission and system design when considering operations in VLEO.

Peer Reviewed

Country
Spain
Related Organizations
Keywords

Earth observation, Satèl·lits artificials en teledetecció, Àrees temàtiques de la UPC::Física, Àrees temàtiques de la UPC::Aeronàutica i espai::Astronàutica, Very-low Earth orbit, Satellite constellations, System modelling, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Satèl·lits i ràdioenllaços, Artificial satellites in remote sensing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
  • 55
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
55
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!