Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao HAL INRAEarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2003
Data sources: HAL INRAE
Mycologia
Article . 2012
versions View all 2 versions
addClaim

Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism.

Authors: Savoie, J.M.; Mata, G.;

Trichoderma harzianum metabolites pre-adapt mushrooms to Trichoderma aggressivum antagonism.

Abstract

Trichoderma spp. is the cause of green mold, a disorder that affects cultivated mushrooms. The aims of the study were to establish whether improvement of mushroom resistance to Trichoderma aggressivum could be obtained by inducing reaction mechanisms before contact with the pathogen and whether this ability was species or strain dependent. Twenty nine isolates of Agaricus bisporus, 29 isolates of Lentinula edodes and 18 isolates of Pleurotus spp. were studied. The effect of T. harzianum metabolites on mycelial growth of these isolates was evaluated on YMEA (yeast, malt extract and agar), supplemented or not with Lysing Enzymes from T. harzianum (Sigma®, L1412). Mycelial growth generally was affected by Lysing Enzymes, but some L. edodes and Pleurotus spp. adapted to Lysing Enzymes. When mycelium was taken from a first culture with Lysing Enzymes and placed on YMEA with Lysing Enzymes for a second culture, their growth rate was not different from those of the controls. In the case of A. bisporus, only partial adaptation was obtained with a few isolates. The effect of adaptation to Lysing Enzymes on resistance to T. aggressivum was assayed for one strain of each group. Trichoderma aggressivum was exposed to the margin of 5- to 9-day-old mushroom colonies. Agaricus bisporus produced brown droplets, and T. aggressivum overgrew its mycelium. Lentinula edodes and P. ostreatus produced brown lines blocking the progression of T. harzianum, both on YMEA and YMEA plus Lysing Enzymes. The line was visible after 3 d on YMEA and after only 2 d on YMEA plus Lysing Enzymes. Improvement in the resistance to antagonists by introduction of some of their metabolites to the culture medium is a method for mushroom protection.

Country
France
Keywords

[SDV] Life Sciences [q-bio], [SDV]Life Sciences [q-bio]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average
Related to Research communities
INRAE
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!