Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
versions View all 2 versions
addClaim

Multitype $\Lambda$-coalescents

Multitype \(\Lambda\)-coalescents
Authors: Johnston, Samuel G. G.; Kyprianou, Andreas; Rogers, Tim;

Multitype $\Lambda$-coalescents

Abstract

Consider a multitype coalescent process in which each block has a colour in $\{1,\ldots,d\}$. Individual blocks may change colour, and some number of blocks of various colours may merge to form a new block of some colour. We show that if the law of a multitype coalescent process is invariant under permutations of blocks of the same colour, has consistent Markovian projections, and has asychronous mergers, then it is a multitype $\Lambda$-coalescent: a process in which single blocks may change colour, two blocks of like colour may merge to form a single block of that colour, or large mergers across various colours happen at rates governed by a $d$-tuple of measures on the unit cube $[0,1]^d$. We go on to identify when such processes come down from infinity. Our framework generalises Pitman's celebrated classification theorem for singletype coalescent processes, and provides a unifying setting for numerous examples that have appeared in the literature including the seed-bank model, the island model and the coalescent structure of continuous-state branching processes.

Comment: 22 pages

Keywords

consistency, Primary 60G09, Secondary 60J99, Exchangeability for stochastic processes, \(\Lambda\)-coalescent, exchangeability, Coalescent processes, Mathematics - Probability, coming down from infinity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green