<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2078.1/279212
Multiword expressions (MWE), a known nuisance for both linguistics and NLP, blur the lines between syntax and semantics. Previous work on MWE identification has relied primarily on surface statistics, which perform poorly for longer MWEs and cannot model discontinuous expressions. To address these problems, we show that even the simplest parsing models can effectively identify MWEs of arbitrary length, and that Tree Substitution Grammars achieve the best results. Our experiments show a 36.4% F1 absolute improvement for French over an n-gram surface statistics baseline, currently the predominant method for MWE identification. Our models are useful for several NLP tasks in which MWE pre-grouping has improved accuracy.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |