
arXiv: 2012.00939
Category theory provides a means through which many far-ranging fields of mathematics can be related by their similar structure. In a paper by Robinson [2], this interconnectivity afforded by categorical perspectives allowed for the realization of torsion products as the homotopy groups of a topological space, which is itself constructed for this express purpose. However, even stating this result formally requires a multitude of preliminaries in algebra, topology, and category theory. The goal of this document is to present a self-contained guide to the fundamental concepts and results, with few proofs, required to do work with this kind of mathematics in hopes of making the field of homotopical algebra more accessible. We only assume familiarity with topological spaces and groups, so it is approachable from an undergraduate level. This project culminates in a discussion of the result of Robinson mentioned above along with a computation as a proof of concept.
Comment: 66 pages, to be expanded upon on occasion
Mathematics - Category Theory, Mathematics - Algebraic Topology, 55-01 (Primary) 18-01, 55U35 (Secondary)
Mathematics - Category Theory, Mathematics - Algebraic Topology, 55-01 (Primary) 18-01, 55U35 (Secondary)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
