Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nematolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

Anhydrobiosis in Pratylenchus penetrans.

Authors: J L, Townshend;

Anhydrobiosis in Pratylenchus penetrans.

Abstract

Anhydrobiotic survival of Pratylenchus penetrans was compared in several soil moisture regimes. Bodies of anhydrobiotic nematodes were coiled. In slow-dried soils, Vineland silt loam (VSL) and Fox loamy sand (FLS), 70 and 58% of the total P. penetrans populations were anhydrobiotic when soil moistures reached ca. 3% and water potential 15 kPa or greater. Coiling began at a much lower water potential in FLS than in VSL. In fast-dried soils, only 31 and 22% of the P. penetrans populations in the same two soil types had entered the anhydrobiotic state at comparable moistures. In the above soils, 76-96% of the P. penetrans were alive immediately after entering the anhydrobiotic state. In slow-dried VSL, some nematodes (1%) survived 770 days. In the other soils, all anhydrobiotic nematodes were dead after 438 days. Anhydrobiosis increased the ability of nematodes to survive subzero temperatures, but it did not increase their ability to survive temperatures above 40 C. Infectivity and reproductivity of rehydrated P. penetrans were not affected by anhydrobiosis.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Top 10%
gold