
pmid: 19161850
handle: 21.11116/0000-000D-B55B-1
Staphylococcus aureus ribonuclease III (Sa-RNase III) belongs to the enzyme family known to process double-stranded RNAs consisting of two turns of the RNA helix. Although the enzyme is thought to play a role in ribosomal RNA processing and gene regulation, the deletion of the rnc gene in S. aureus does not affect cell growth in rich medium. S. aureus RNase III acts in concert with regulatory RNAIII to repress the expression of several mRNAs encoding virulence factors. The action of the RNase is most likely to initiate the degradation of repressed mRNAs leading to an irreversible repression. In this chapter, we describe the overexpression and purification of recombinant RNase III from S. aureus, and we show that its biochemical properties are similar to the orthologous enzyme from Escherichia coli. Both enzymes similarly recognize and cleave different RNA substrates and RNA-mRNA duplexes.
Electrophoresis, Agar Gel, Ribonuclease III, RNA, Bacterial, Staphylococcus aureus, Base Sequence, Virulence, Nucleic Acid Conformation, DNA Primers, Substrate Specificity
Electrophoresis, Agar Gel, Ribonuclease III, RNA, Bacterial, Staphylococcus aureus, Base Sequence, Virulence, Nucleic Acid Conformation, DNA Primers, Substrate Specificity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
