
The aim of this study is to isolate novel and efficient polycyclic aromatic hydrocarbon (PAH) degrading bacteria from deep sea.Bacteria in deep-sea water sample from Indian Ocean were enriched in the medium with crude oil as the carbon source. PAH-degrading bacteria were isolated and their degradation potential was tested by Gas Chromatography-Mass Spectrometry. PCR-primers were designed to detect the gene encoding the large subunit of aromatic-ring-hydroxylating dioxygenase.A PAHs-degrading bacterium, named H25 was obtained. Several PAHs including 2-methynaphthalene, 2, 6-dimethynaphthalene, phenanthrene and dibenzothiopheneand dibenzofuran could be used as carbon sources for growth by strain H25. Analysis of 16S rDNA sequence showed that it belonged to genus Novosphingobium with highest similarity (96%) with previously described bacteria. Two fragments of the dioxygenase gene were obtained by PCR with size of about 700bp, which were closest to the counterpart of N. aromaticivorans DSM12444 with 99.6% and 91.0% similarities. Furthermore, two fragments named H25I (2.9 kb) and H25II(4.5kb) containing the upstream and downstream sequences were obtained by another set of primers.Strain H25 was a novel PAH-degrading bacterium in deep sea environment, which might play a role in bioattenuation of PAH in oceanic environments and has potential in bioremediation of PAH contaminated environment.
DNA, Bacterial, Molecular Sequence Data, DNA, Ribosomal, Dioxygenases, Sphingomonadaceae, Biodegradation, Environmental, Bacterial Proteins, RNA, Ribosomal, 16S, Seawater, Polycyclic Aromatic Hydrocarbons, Indian Ocean, Phylogeny
DNA, Bacterial, Molecular Sequence Data, DNA, Ribosomal, Dioxygenases, Sphingomonadaceae, Biodegradation, Environmental, Bacterial Proteins, RNA, Ribosomal, 16S, Seawater, Polycyclic Aromatic Hydrocarbons, Indian Ocean, Phylogeny
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
