Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Modelling landscape evolution under ice sheets

Authors: Jamieson, Stewart Scott Roderick;

Modelling landscape evolution under ice sheets

Abstract

This thesis details the application of numerical modelling techniques to simulate erosion under ice sheets with the aim of better understanding the interrelationships between glacial erosion, long-term landscape evolution and ice dynamics. A model is developed that predicts patterns of basal erosion in a glaciologically sensible manner and shows that 'fluvial' landscapes can become 'glacial' systems within 100 kyrs. By simulating ice sheet growth and erosion over synthetic landscapes of varying form, amplitude and wavelength the topographic characteristics that are most critical to the evolution of ice dynamics, and to ongoing erosion are identified. The model is applied to the solution of two puzzles regarding the interaction of ice, erosion and landscape in Patagonia and Antarctica. In settings similar to Patagonia, glacial erosion is shown to be able to drive large-scale change in ice dynamics on 10⁵ to 10⁶ year timescales. This goes some way to explaining the behaviour of the Patagonian ice sheet since the 'Greatest Patagonian Glaciation', whereby ice extents reduce over successive glacial cycles, contradicting patterns of global ice volume. In Antarctica, the model is used to predict the pattern of long-term ice mass expansion and associated patterns of landscape evolution. For the first time, predictions tied to ice dynamics are made regarding the degree to which the Antarctic landscape has been modified by ice as it expands from local to regional ice centres and then to a continental scale ice sheet. Common themes throughout this thesis are that preglacial landscape geometry is a critical driver of the pattern of landscape evolution under ice, and that erosion should no longer be considered a passive component of any glacial system over timescales of 10⁵ and greater.

Country
United Kingdom
Related Organizations
Keywords

Annexe Thesis Digitisation Project 2018 Block 18

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green