
handle: 1822/23897
Currently, the majority of matchers are able to establish simple correspondences between entities, but are not able to provide complex alignments. Furthermore, the resulting alignments do not contain additional information on how they were extracted and formed. Not only it becomes hard to debug the alignment results, but it is also difficult to justify correspondences. We propose a method to generate complex ontology alignments that captures the semantics of matching algorithms and human-oriented ontology alignment definition processes. Through these semantics, arguments that provide an abstraction over the specificities of the alignment process are generated and used by agents to share, negotiate and combine correspondences. After the negotiation process, the resulting arguments and their relations can be visualized by humans in order to debug and understand the given correspondences.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
