Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Padua research Archi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temperature control by the blood temperature monitor.

Authors: Schneditz D; Ronco C; Levin N;

Temperature control by the blood temperature monitor.

Abstract

The rationale of temperature control during hemodialysis (HD) is to prevent heat accumulation, which increases body temperature and enhances hypotensive susceptibility. Treatments where thermal energy is neither delivered nor removed from the patient through the extracorporeal circulation (so-called extracorporeal thermoneutral treatments) lead to a marked increase in body temperature and to considerable heat accumulation during HD. Since this accumulation of heat cannot be explained by increased heat production, it must be related to reduced heat dissipation through the body surface. Peripheral vasoconstriction, and cutaneous vasoconstriction in particular, compensating for the ultrafiltration-induced decrease in blood volume is considered an important component in this setting. Therefore, to maintain temperature homeostasis, thermal energy has to be cleared from the patient by the extracorporeal system because cutaneous clearance of thermal energy is compromised intradialytically. The focus on dialysate temperature alone does not properly address the problem of controlled extracorporeal heat removal because dialysate temperature is only one of the variables involved in that process. These difficulties can be addressed by changing from the control of dialysate temperature to control of body temperature. Control of body temperature and temperature homeostasis is achievable by the physiologic feedback control system realized in the temperature control mode (T-mode) of the blood temperature monitor (BTM). The delivery of isothermic dialysis, that is, dialysis where body temperature is controlled to remain constant during the treatment, has impressively improved hemodynamic stability in hypotension prone patients.

Related Organizations
Keywords

Renal Dialysis, Humans, Body Temperature Regulation, Monitoring, Physiologic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!