Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canada Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canada Research
Thesis . 2005
Data sources: Canada Research
MacSphere
Thesis . 2017
Data sources: MacSphere
versions View all 2 versions
addClaim

Gas Slag Reaction Kinetics in Slag Cleaning of Copper Slags

Authors: Chen, Elaine (Xiao Ming);

Gas Slag Reaction Kinetics in Slag Cleaning of Copper Slags

Abstract

The reduction of iron oxide from slag is involved in many processes, such as, bath smelting, EAF steelmaking and copper slag cleaning processes, and it is known to occur via gaseous intermediates. Four possible rate determining steps are involved during the reduction. Among them, these two interfacial chemical reactions, gas slag and gas carbon could ultimately limit the enhancement of these processes.In this work, the gas slag reaction kinetics in slag cleaning of copper slags has been studied. The dissociation rate of CO2 on the surface of liquid copper slags is measured using an isotope exchange method, where the mass transfer in the gas phase was eliminated by using a sufficiently high gas flowrate.It is found that, for slag of the FexO-SiO2-Al2O3-Cu2O system, the apparent rate constant remains fixed with Cu2O content from 1-10 wt pct at higher oxygen potentials. The rate constant becomes approximately 2 times higher after metallic copper is reduced from the slag, this is due to the suspension of small metal drops on the slag surface.The effect of temperature in the range from 1200-1450°C on the rate constants was also studied. The activation energy was 190 kJ/mole for slag of composition 60FexO30SiO2-1 0Al2O3. In the presence of Cu metal~10%, the activation energy was reduced to 122 kJ/mole.

Master of Engineering (MEngr)

Thesis

Country
Canada
Related Organizations
Keywords

Gas slag, reaction, kinetics, copper slags, gas phase, flowrate

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!