Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Analysis of Turbine Wake Characteristics using Proper Orthogonal Decomposition and Triple Decomposition Methods

Authors: Premaratne, Pavithra; Tian, Wei; Hu, Hui;

Analysis of Turbine Wake Characteristics using Proper Orthogonal Decomposition and Triple Decomposition Methods

Abstract

In the present study, we report the progress made in our efforts to examine the wake flow characteristics behind a commonly-used three-bladed horizontal-axis wind turbine. A series of experiments were performed in a large-scale wind tunnel with a scaled wind turbine model placed in a typical Atmospheric Boundary Layer (ABL) wind under neutral stability conditions. In addition to measuring dynamic wind loads acting on the model turbine by using a force- moment sensor, a high-resolution digital particle image velocimetry (PIV) system was used to achieve detailed flow field measurements to quantify the characteristics of the turbulent vortex flow behind the turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady wake vortex structures in relation to the position of the rotating turbine blades. The detailed flow field measurements were used to validate the analytical models for the velocity deficit prediction in turbine wakes. Proper Orthogonal Decomposition (POD) method was employed in the present study for the data reduction of the PIV measurement results to identify the high energy modes that dominate the turbulent kinetic energy distributions in the turbine wakes. Triple Decomposition (TD) approach was also used to analyze the phase-locked PIV measurement results to elucidate the underling physics related to the intensive turbulent mixing process in the wake flow, which would promote the vertical transport of kinetic energy to entrain more high-speed airflow from above to re-charge the wake flow behind the wind turbine model.

Session 0A - Graduate Student Symposium

Country
United States
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!