Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inteligencia Artificial en biomedicina

Authors: Díaz-del-Pino, Sergio;

Inteligencia Artificial en biomedicina

Abstract

En esta tesis doctoral vamos a realizar un recorrido por los distintos pasos del flujo de trabajo de la Inteligencia Artificial aplicado a la biomedicina. Desde la recolección de datos y su etiquetado, su análisis mediante la aplicación de distintos algoritmos pertenecientes al campo del Aprendizaje Computacional, la explicabilidad de los resultados y el uso de técnicas de análisis visual para el soporte en el preprocesado y los resultados. Lo haremos en base a dos casos de uso ligados a las enfermedades genéticas: 1) la clasificación de enfermedades hematológicas a través de datos clínicos, usando un hemograma tradicional, por su naturaleza genética y por sus posibilidades de aplicación a nivel traslacional y 2) la detección de zonas de alta recombinación meiótica mediante el análisis de secuencias, por su relación directa con el desarrollo de enfermedades genéticas.Abordaremos estos problemas desde una perspectiva holística, multidisciplinar y transversal, proponiendo 1) métodos para el etiquetado de datos,2) métodos para el análisis visual de resultados y su pre/post procesamiento, 3) modelos de clasificación mediante el uso de algoritmos inteligentes y 4)protocolos de explicabilidad para los mismos

Country
Spain
Related Organizations
Keywords

Redes neuronales (Informática), Inteligencia artificial - Aplicaciones médicas, 330, Neuronales, Artificial, Redes, Biomedicina, Inteligencia, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green