<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10630/31086
En esta tesis doctoral vamos a realizar un recorrido por los distintos pasos del flujo de trabajo de la Inteligencia Artificial aplicado a la biomedicina. Desde la recolección de datos y su etiquetado, su análisis mediante la aplicación de distintos algoritmos pertenecientes al campo del Aprendizaje Computacional, la explicabilidad de los resultados y el uso de técnicas de análisis visual para el soporte en el preprocesado y los resultados. Lo haremos en base a dos casos de uso ligados a las enfermedades genéticas: 1) la clasificación de enfermedades hematológicas a través de datos clínicos, usando un hemograma tradicional, por su naturaleza genética y por sus posibilidades de aplicación a nivel traslacional y 2) la detección de zonas de alta recombinación meiótica mediante el análisis de secuencias, por su relación directa con el desarrollo de enfermedades genéticas.Abordaremos estos problemas desde una perspectiva holística, multidisciplinar y transversal, proponiendo 1) métodos para el etiquetado de datos,2) métodos para el análisis visual de resultados y su pre/post procesamiento, 3) modelos de clasificación mediante el uso de algoritmos inteligentes y 4)protocolos de explicabilidad para los mismos
Redes neuronales (Informática), Inteligencia artificial - Aplicaciones médicas, 330, Neuronales, Artificial, Redes, Biomedicina, Inteligencia, 004
Redes neuronales (Informática), Inteligencia artificial - Aplicaciones médicas, 330, Neuronales, Artificial, Redes, Biomedicina, Inteligencia, 004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |