Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1063/5.0125040
handle: 10261/286961
In the presence of asymmetric potential barriers, such as those created by imprint fields, ferroelectric polarization can be reversed by light due to the photoinduced suppression of polarization. Both thermal effects and photocarrier-induced polarization screening may agree with this experimental observation, challenging its understanding. Here, we explore light-induced ferroelectric polarization switching in BaTiO3 thin films. Time-dependent photocurrent and photoresistance experiments at different wavelengths indicate that the optical switch of polarization is mainly driven by photocarriers rather than thermal effects. The effect of light on sample polarization is found to be relatively slow and that an illumination period as long as ≈100 s is required to achieve complete switching when using a 405 nm light wavelength and 1.4 W/cm2 power density. It is shown that this response is governed by the concentration of photo-generated charges, which is low due to the reduced light absorption of BaTiO3 films at the explored wavelengths. Our conclusions can help us to better design optically switching devices based on ferroelectric materials.
Ferroelectric materials, Tunnel junctions, Thin films, Heterostructures, Resistive switching
Ferroelectric materials, Tunnel junctions, Thin films, Heterostructures, Resistive switching
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 29 | |
| downloads | 84 |

Views provided by UsageCounts
Downloads provided by UsageCounts