Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pontificia Universid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Movement Disorders
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Movement Disorders
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2020
Data sources: DIGITAL.CSIC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SNCAandmTORPathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease

Authors: Fernández-Santiago, Rubén; Martín-Flores, Núria; Antonelli, Francesca; Cerquera, Catalina; Moreno, Verónica; Bandres-Ciga, Sara; Manduchi, Elisabetta; +155 Authors

SNCAandmTORPathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease

Abstract

AbstractBackgroundSingle nucleotide polymorphisms (SNPs) in the α‐synuclein (SNCA) gene are associated with differential risk and age at onset (AAO) of both idiopathic and Leucine‐rich repeat kinase 2 (LRRK2)‐associated Parkinson's disease (PD). Yet potential combinatory or synergistic effects among several modulatory SNPs for PD risk or AAO remain largely underexplored.ObjectivesThe mechanistic target of rapamycin (mTOR) signaling pathway is functionally impaired in PD. Here we explored whether SNPs in themTORpathway, alone or by epistatic interaction with known susceptibility factors, can modulate PD risk and AAO.MethodsBased on functional relevance, we selected a total of 64 SNPs mapping to a total of 57 genes from themTORpathway and genotyped a discovery series cohort encompassing 898 PD patients and 921 controls. As a replication series, we screened 4170 PD and 3014 controls available from the International Parkinson's Disease Genomics Consortium.ResultsIn the discovery series cohort, we found a 4‐loci interaction involvingSTK11rs8111699,FCHSD1rs456998,GSK3Brs1732170, andSNCArs356219, which was associated with an increased risk of PD (odds ratio = 2.59,P< .001). In addition, we also found a 3‐loci epistatic combination ofRPTORrs11868112 andRPS6KA2rs6456121 withSNCArs356219, which was associated (odds ratio = 2.89;P< .0001) with differential AAO. The latter was further validated (odds ratio = 1.56;P= 0.046‐0.047) in the International Parkinson's Disease Genomics Consortium cohort.ConclusionsThese findings indicate that genetic variability in themTORpathway contributes toSNCAeffects in a nonlinear epistatic manner to modulate differential AAO in PD, unraveling the contribution of this cascade in the pathogenesis of the disease. © 2019 International Parkinson and Movement Disorder Society

Keywords

epistasis, Adult, Male, Genotype, alpha-synuclein, Parkinson's disease, Alpha‐synuclein, 610, SNP, Polymorphism, Single Nucleotide, Risk Assessment, Alpha-synuclein, Cohort Studies, 616, Humans, Genetic Predisposition to Disease, Age of Onset, Aged, Aged, 80 and over, ddc:610, TOR Serine-Threonine Kinases, Age at onset, Chromosome Mapping, Epistasis, Genetic, Parkinson Disease, Middle Aged, [SDV] Life Sciences [q-bio], Parkinson’s disease, Epistasis, mTOR, alpha-Synuclein, Female, age at onset, Signal Transduction, ddc: ddc:610

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 36
    download downloads 30
  • 36
    views
    30
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
24
Top 10%
Average
Top 10%
36
30
Green
bronze