
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/208912
This work studies the gasification of char derived from waste tire pyrolysis (pCB) by using a thermogravimetric analyzer under CO2/N2 atmospheres (20/80, 25/85 and 30/70 vol%) at different temperatures (825 °C, 850 °C, 875 °C, 900 °C and 925 °C). The main goal is the assessment of three different kinetic models for predicting not only the conversion (X) versus time (t) curve, but also the reaction rate (dX/dt) versus conversion (X) one, with high accuracy. At this respect, the Changing Grain Size Model (CGSM), the Random Pore Model (RPM) and a new model based on the RPM named the Hybrid Modified Random Pore Model (HMRPM) were used. The three models were fitted and the kinetic parameters such as the apparent kinetic constant (Ki(T,pj)), the reaction order (n), the activation energy (Ea) and the pre-exponential factor (A) were determined. The results suggest that the HMRPM is the model with better fitting because its ability to reproduce both conversion (X) and reaction rate (dX/dt); and hence, it is reliable to be integrated in both particle and reactor models, i.e. when the process is being designed and scaled-up. A drastically decrease in the reaction rate at the first stage of conversion (<20%) suggests a possible effect of volatile matter and inorganic compounds contained into the pCB. The n, Ea and A were found to be 0.543, 147.27 kJ/mol and 4.547 × 105 s−1, respectively.
This work has been carried out as part of the project WASYNG (No. RTI2018-095575-BI00) funded by the Spanish Ministry of Science, Innovation and Universities and the Regional Aragon Government (DGA) for the economic support under the research groups' support program.
7 Figures, 6 tables.-- © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Peer reviewed
Kinetic models, Waste tire, Char, Gasification
Kinetic models, Waste tire, Char, Gasification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 53 | |
downloads | 222 |