Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science China Information Sciences
Article . 2019 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2020 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2019
Data sources: HAL AMU
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A branching heuristic for SAT solvers based on complete implication graphs

Authors: Xiao, Fan; Li, Chu-Min; Luo, Mao; Manya, Felip; Lu, Zhipeng; Li, Yu;

A branching heuristic for SAT solvers based on complete implication graphs

Abstract

The performance of modern conflict-driven clause learning (CDCL) SAT solvers strongly depends on branching heuristics. State-of-the-art branching heuristics, such as variable state independent decaying sum (VSIDS) and learning rate branching (LRB), are computed and maintained by aggregating the occurrences of the variables in conflicts. However, these heuristics are not sufficiently accurate at the beginning of the search because they are based on very few conflicts. We propose the distance branching heuristic, which, given a conflict, constructs a complete implication graph and increments the score of a variable considering the longest distance between the variable and the conflict rather than the simple presence of the variable in the graph. We implemented the proposed distance branching heuristic in Maple_LCM and Glucose-3.0, two of the best CDCL SAT solvers, and used the resulting solvers to solve instances from the application and crafted tracks of the 2014 and 2016 SAT competitions and the main track of the 2017 SAT competition. The empirical results demonstrate that using the proposed distance branching heuristic in the initialization phase of Maple_LCM and Glucose-3.0 solvers improves performance. The Maple_LCM solver with the proposed distance branching heuristic in the initialization phase won the main track of the 2017 SAT competition.

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61370183, 61370184, 61472147), Matrics Platform of the Université de Picardie Jules Verne, and MINECO-FEDER Project RASO (Grant No. TIN2015-71799-C2-1-P)

Peer reviewed

Keywords

Implication graph, SAT, [INFO] Computer Science [cs], Branching heuristic, Conflict-driven clause learning, SAT branching heuristic conflict-driven clause learning implication graph, SAT, branching heuristic, conflict-driven clause learning, implication graph

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 47
    download downloads 40
  • 47
    views
    40
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
9
Top 10%
Average
Average
47
40
Green