 Downloads provided by UsageCounts
Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )handle: 10261/165194
Reducing the working pressure at the sprinkler nozzles is one of the alternatives to reduce energy requirements in solid-set sprinkler irrigation systems. Previous studies reported ≈10% lower seasonal Christiansen uniformity coefficient (CUC) for low-pressure treatments than for standard treatments, but no differences in maize yield. This research analyses the effect of maize canopy water partitioning on irrigation performance indexes (CUC and wind drift and evaporation losses, WDEL). Three irrigation treatments were considered, based on the working pressure: 1) A standard brass impact sprinkler operating at a pressure of 300 kPa (CIS300); 2) A standard brass impact sprinkler operating at a pressure of 200 kPa (CIS200); and 3) A modified plastic impact sprinkler (with a deflecting plate attached to the drive arm) operating at a pressure of 200 kPa (DPIS200). Irrigation performance was measured using a catch-can network located above the maize canopy (CUCac, WDELac) along the whole crop season and using stemflow and throughfall devices below the maize canopy (CUCbc, WDELbc) in eight irrigation events. Maize growth, yield and its components were measured. Under low-wind and fully developed canopy conditions (a frequent situation for maize irrigation), CUCbc resulted higher than CUCac for the low-pressure treatments, while the opposite was observed for the standard pressure treatment. Maize canopy partitioning reduces the differences in irrigation performance indexes between pressure treatments, explaining why there are no differences in grain yield between them. Caution should be used when measuring sprinkler irrigation performance above tall canopies, since the elevation of the catch-cans and the crop canopy partitioning affect performance estimations.
This research was funded by the Minister of Economy, Industry and Competitiveness (MICINN) of the Government of Spain through grant AGL2013-48728-C2-1-R. Octavio Robles has a scholarship funded by the Minister of Economy and Competitiveness of the Spanish Government.
51 Pags.- 4 Tabls.- 12 Figs. The definitive version is available at: https://www.sciencedirect.com/science/journal/03783774
Peer reviewed
Low-pressure, Irrigation uniformity, Catch-cans, Wind drift and evaporation losses, Stemflow, Throughfall
Low-pressure, Irrigation uniformity, Catch-cans, Wind drift and evaporation losses, Stemflow, Throughfall
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
| views | 43 | |
| downloads | 96 | 

 Views provided by UsageCounts
Views provided by UsageCounts Downloads provided by UsageCounts
Downloads provided by UsageCounts