Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 10261/164749
We consider in this work the problem of scheduling a set of jobs without preemption, where each job requires two resources: (1) a common resource, shared by all jobs, is required during a part of the job¿s processing period, while (2) a secondary resource, which is shared with only a subset of the other jobs, is required during the job¿s whole processing period. This problem models, for example, the scheduling of patients during one day in a particle therapy facility for cancer treatment. First, we show that the tackled problem is NP-hard. We then present a construction heuristic and a novel A* algorithm, both on the basis of an effective lower bound calculation. For comparison, we also model the problem as a mixed-integer linear program (MILP). An extensive experimental evaluation on three types of problem instances shows that A* typically works extremely well, even in the context of large instances with up to 1000 jobs. When our A* does not terminate with proven optimality, which might happen due to excessive memory requirements, it still returns an approximate solution with a usually small optimality gap. In contrast, solving the MILP model with the MILP solver CPLEX is not competitive except for very small problem instances. © Springer International Publishing AG 2018.
We gratefully acknowledge the financial support of the Doctoral Program “Vienna Graduate School on Computational Optimization” funded by Austrian Science Foundation under Project No W1260-N35.
Peer Reviewed
Optimization, Learning systems, Scheduling, Patient treatment, Integer programming, Diseases
Optimization, Learning systems, Scheduling, Patient treatment, Integer programming, Diseases
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 26 | |
| downloads | 40 |

Views provided by UsageCounts
Downloads provided by UsageCounts