Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DIGITAL.CSICarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2017 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Paleolimnology
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recognition and mapping of lacustrine relict coastal features using high resolution aerial photographs and LiDAR data

Authors: C. Castañeda; F. J. Gracia;

Recognition and mapping of lacustrine relict coastal features using high resolution aerial photographs and LiDAR data

Abstract

Shallow lakes in semiarid regions experience frequent water level fluctuations. Each long-lasting episode of water-level lowering leaves behind abandoned littoral forms and deposits whose identification and mapping is hampered by their smooth relief. Given the difficulty of recognising these possible relict forms using traditional geomorphological techniques, two sources of information were employed in the present work: high resolution (1:15,000) aerial photographs and a digital terrain model (DTM) generated from LiDAR data. The improved definition of surface elevation enhanced the quality of geomorphological mapping as well as the accurate delineation of subtle geoforms. The method was applied to Gallocanta Lake, a highly fluctuating shallow lake 14 km2 in area and less than 3 m deep located in a mountainous semiarid area of NE Spain. As a result, a sequence of relict coastal features (RCF) with high lateral continuity has been identified around the lakebed. These include well-preserved spits with recurved hooks, counter-spits, bays closed by barrier islands, beach ridges, deltas and cliffs. The highly precise LiDAR-derived topographic maps suggest a much greater extension of the lacustrine environment during the Late Pleistocene, reaching at least 51 km2 of water surface and about 13 m of depth above the present lake bottom. The method presented in this paper generates very detailed palaeogeographical maps that are particularly useful for reconstructing lake changes in semiarid environments as a function of climate change.

This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) under the project PCIN-2014-106 and by the Spanish Research Council (CSIC) under the project i-COOP-2016SU0015.

20 Pags.- 6 Figs. The definitive version is available at: https://link.springer.com/journal/10933

Peer reviewed

Country
Spain
Keywords

Lake margin, Photointerpretation, DEM, Coastal mapping

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 21
    download downloads 74
  • 21
    views
    74
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Average
Average
Average
21
74
Green
bronze