Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Cholesterol degradation plays a prominent role in Mycobacterium tuberculosis infection; therefore, to develop new tools to combat this disease, we need to decipher the components comprising and regulating the corresponding pathway. A TetR-like repressor (KstR) regulates the upper part of this complex catabolic pathway, but the induction mechanism remains unknown. Using a biophysical approach, we have discovered that the inducer molecule of KstR in M. smegmatis mc(2)155 is not cholesterol but 3-oxo-4-cholestenoic acid, one of the first metabolic intermediates. Binding this compound induces dramatic conformational changes in KstR that promote the KstR-DNA interaction to be released from the operator, retaining its dimeric state. Our findings suggest a regulatory model common to all cholesterol degrading bacteria in which the first steps of the pathway are critical to its mineralization and explain the high redundancy of the enzymes involved in these initial steps.
Cholesterol regulation, Transcription, Genetic, Mycobacterium smegmatis, Gene Expression Regulation, Bacterial, Mycobacterium tuberculosis, Models, Biological, Mycobacterium, Actinobacteria, Repressor Proteins, Cholesterol, Bacterial Proteins, Cholesterol metabolism, Tuberculosis, Transcription Regulation
Cholesterol regulation, Transcription, Genetic, Mycobacterium smegmatis, Gene Expression Regulation, Bacterial, Mycobacterium tuberculosis, Models, Biological, Mycobacterium, Actinobacteria, Repressor Proteins, Cholesterol, Bacterial Proteins, Cholesterol metabolism, Tuberculosis, Transcription Regulation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 40 | |
| downloads | 113 |

Views provided by UsageCounts
Downloads provided by UsageCounts