Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geomorphologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geomorphology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Geomorphology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A meta-analysis of soil erosion rates across the world

Authors: García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y.;

A meta-analysis of soil erosion rates across the world

Abstract

Over the last century extraordinary efforts have been devoted to determining soil erosion rates (in units of mass per area and time) under a large range of climatic conditions and land uses, and involving various measurement methods. We undertook a meta-analysis of published data from more than 4000 sites worldwide. The results show that there is extraordinarily high variability in erosion rates, with almost any rate apparently possible irrespective of slope, climate, scale, land use/land cover and other environmental characteristics. However, detailed analysis revealed a number of general features including positive relationships of erosion rate with slope and annual precipitation, and a significant effect of land use, with agricultural lands yielding the highest erosion rates, and forest and shrublands yielding the lowest. Despite these general trends, there is much variability that is not explained by this combination of factors, but is related, at least partially, to the experimental conditions. Our analysis revealed a negative relationship between erosion rate and the size of the study area involved; significant differences associated with differing measurement methods, with direct sediment measurement yielding the lowest erosion rates, and bathymetric, radioisotope and modeling methods yielding the highest rates; and a very important effect of the duration of the experiment. Our results highlight that, when interpreting erosion rates, the experimental conditions involved must be taken into account. Even so, the data suggest that only order of magnitude approximations of erosion rates are possible, and these retain a very large degree of uncertainty. Consequently, for practical purposes such as calculation of global sediment budgets, empirical equations are not a substitute for direct measurements. Our results also show that a large proportion of the experiments have been short-term (less than 3. years), which reduces dramatically the reliability of the estimated erosion rates, given the highly non-normal behavior of soil erosion (time-dependency). Despite the efforts already made, more long-term measurement experiments need to be performed, especially in regions of the world that are under-represented in global datasets. In addition, protocols need to be established for standardizing the measurement methods and reporting the results, to enable data to be compared among diverse sites.

Support for this research was provided by the projects INDICA (CGL2011-27753-C02-01 and -02) and HIDROCAES (CGL2011-27574-C02-C01), funded by the Spanish Ministry of Economy and Competitiveness, and an agreement between the CSIC and the Spanish Ministry of Environment (RESEL). The Geomorphology and Global Change research group was financed by the Aragón Government and the European Social Fund (ESF-FSE) (E68). Estela Nadal-Romero and Yasmina Sanjuán were the recipients of a “Marie Curie-IEF” postdoctoral contract (Project 624974) and an FPI pre-doctoral contract from the European Commission and the Spanish Ministry of Economy and Competitiveness, respectively.

49 páginas, 13 figuras

Peer reviewed

Country
Netherlands
Keywords

Geomorphological methods, Erosion rates, 550, Scale-dependency, Experimental catchments, Sediment yield, Experimental plots

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    481
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 120
    download downloads 926
  • 120
    views
    926
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
481
Top 0.1%
Top 1%
Top 1%
120
926
Green
hybrid