Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Euphytica
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2014 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L)

Authors: Madrid, Eva; Seoane, Pedro; Claros, M. Gonzalo; Barro Losada, Francisco; Rubio, Josefa; Gil, Juan; Millán, Teresa;

Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L)

Abstract

Physical and genetic maps of chickpea a QTL related to Ascochyta blight resistance and located in LG2 (QTLAR3) have been constructed. Single-copy markers based on candidate genes located in the Ca2 pseudomolecule were for the first time obtained and found to be useful for refining the QTL position. The location of the QTLAR3 peak was linked to an ethylene insensitive 3-like gene (Ein3). The Ein3 gene explained the highest percentage of the total phenotypic variation for resistance to blight (44.3 %) with a confidence interval of 16.3 cM. This genomic region was predicted to be at the Ca2 physical position 32-33 Mb, comprising 42 genes. Candidate genes located in this region include Ein3, Avr9/Cf9 and Argonaute 4, directly involved in disease resistance mechanisms. However, there are other genes outside the confidence interval that may play a role in the blight resistance pathway. The information reported in this paper will facilitate the development of functional markers to be used in the screening of germplasm collections or breeding materials, improving the efficiency and effectiveness of conventional breeding methods. © 2014 Springer Science+Business Media Dordrecht.

This research was supported by the Spanish Ministry of Science and Innovation (MICINN; project RTA2010-00059), co-financed with European Regional Development Fund (FEDER). E. Madrid was financed by ‘Juan de la Cierva’ grant.

Peer Reviewed

Keywords

Physical map, Molecular markers, Ascochyta blight, Candidate genes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 41
    download downloads 57
  • 41
    views
    57
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
27
Top 10%
Average
Top 10%
41
57
Green