
This paper studies three natural pre-orders of increasing generality on the set of all completely non-unitary partial isometries with equal defect indices. We show that the problem of determining when one partial isometry is less than another with respect to these pre-orders is equivalent to the existence of a bounded (or isometric) multiplier between two natural reproducing kernel Hilbert spaces of analytic functions. For large classes of partial isometries these spaces can be realized as the well-known model subspaces and deBranges-Rovnyak spaces. This characterization is applied to investigate properties of these pre-orders and the equivalence classes they generate.
30 pages. To appear in Journal of Operator Theory
Mathematics - Functional Analysis, FOS: Mathematics, 06A06, 47A20, 47A45, 47B25, 47B32, 47E32, Functional Analysis (math.FA)
Mathematics - Functional Analysis, FOS: Mathematics, 06A06, 47A20, 47A45, 47B25, 47B32, 47E32, Functional Analysis (math.FA)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
