
The dissociation limit of AsCl free-radical is correctly determined based on group theory and atomic and molecular statics. Potential energy curves (PECs) for the ground state and several low-lying electronic excited states of AsCl free-radical are calculated using the multi-reference configuration interaction method with the basis set of aug-cc-pV5Z where the Davidson correction is considered as an approximation to full CI. Separation parameters (Re, e, ee, D0, De, Be and e) are evaluated using the PEC of AsCl. Spectroscopic parameters are compared with those reported in the literature, and excellent agreement is found between them. With the PEC of AsCl free-radical, forty vibrational states of AsCl free-radical are predicted when J=0 by numerically solving the radial Schrdinger equation of nuclear notion. For each vibrational state, the vibrational levels and inertial rotation constants are reported.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
