<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.7202/013142ar
Ice streams had a major influence on the configuration and the stability of the Laurentide Ice Sheet. Their identification is crucial for an understanding of ice sheet behaviour and their importance is reflected by the recent increase in paleo-ice stream research. This paper provides a synopsis of Laurentide paleo-ice streams, compiled from published sources and our mapping from satellite imagery and aerial photography. In total, 49 hypothesised ice streams are reviewed, and categorised according to the strength of evidence for streaming and knowledge of their extent. A map of Laurentide paleo-ice streams is presented, along with tables documenting the nature of evidence on which streaming behaviour has been invoked. The distribution of ice streams demonstrates the spatial organisation of fast ice flow, and overlapping imprints document major changes in ice flow during retreat. We note that Laurentide paleo-ice streams exhibit a much greater range in size than those currently operating in Antarctica.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |