
doi: 10.7155/jgaa.00347
A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. 1-planarity is known NP-hard, even for graphs of bounded bandwidth, pathwidth, or treewidth, and for near-planar graphs in which an edge is added to a planar graph. On the other hand, there is a linear time 1-planarity testing algorithm for maximal 1-planar graphs with a given rotation system. In this work, we show that 1-planarity remains NP-hard even for 3-connected graphs with (or without) a rotation system. Moreover, the crossing number problem remains NP-hard for 3-connected 1-planar graphs with (or without) a rotation system.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
