Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematical Inequal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Mathematical Inequalities & Applications
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A-Statistical convergence of approximating operators

\(A\)-statistical convergence of approximating operators
Authors: Duman, O.; Khan, M. K.; Orhan, C.;

A-Statistical convergence of approximating operators

Abstract

Let \(A\) be a regular summability matrix all of whose entries \(a_{n_k}\) \((n\in \mathbb N, k\in\mathbb N)\) are non-negative. A sequence \(x=\{x_k\}\) is said to be \(A\)-statistically convergent to \(L\) if and only if for every \(\varepsilon>0\) \[ \lim_{n}\sum_{k:|x_k-L|\geq \varepsilon}a_{n_k}=0. \] This concept was introduced by \textit{A. R. Freedman} and \textit{J. J. Sember} [Densities and summability, Pac. J. Math. 95, 293--305 (1981; Zbl 0504.40002)]. In \textit{A. D. Gadjiev} and \textit{C. Orhan} [Some approximation theorems via statistical convergence, Rocky Mt. J. Math. 32, No.~1, 129--138 (2002; Zbl 1039.41018)], some classical Korovkin type approximation theorems have been studied via statistical convergence (the special case of the Cesàro summability matrix). In the present paper the authors study the analogues of the classical Korovkin theorem via \(A\)-statistical convergence using an arbitrary interval of \(\mathbb R\). Also, some results on \(A\)-statistical rates of convergence of positive linear operators are obtained.

Keywords

Convergence and divergence of series and sequences, Approximation by positive operators, Rate of convergence, degree of approximation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Average
gold