
doi: 10.7151/dmgt.2351
The crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. Recently, the crossing numbers of join products of two graphs have been studied. In the paper, we extend know results concerning crossing numbers of join products of small graphs with discrete graphs. The crossing number of the join product G*+ Dn for the disconnected graph G* consisting of five vertices and of three edges incident with the same vertex is given. Up to now, the crossing numbers of G + Dn were done only for connected graphs G. In the paper also the crossing numbers of G*+ Pn and G* + Cn are given. The paper concludes by giving the crossing numbers of the graphs H + Dn, H + Pn, and H + Cn for four different graphs H with |E(H)| ≤ |V (H)|. The methods used in the paper are new. They are based on combinatorial properties of cyclic permutations.
join product, graph, drawing, cyclic permutation, 05c38, QA1-939, 05c10, crossing number, Mathematics
join product, graph, drawing, cyclic permutation, 05c38, QA1-939, 05c10, crossing number, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
