Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IACR Communications ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IACR Communications in Cryptology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2024
Data sources: Radboud Repository
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plaintext-based Side-channel Collision Attack

Authors: Wu, L.; Tiran, S.; Perin, G.; Picek, S.; Picek, S.;

Plaintext-based Side-channel Collision Attack

Abstract

Side-channel Collision Attacks (SCCA) is a classical method that exploits information dependency leaked during cryptographic operations. Unlike collision attacks that seek instances where two different inputs to a cryptographic algorithm yield identical outputs, SCCAs specifically target the internal state, where identical outputs are more likely. Although SCCA does not rely on the pre-assumption of the leakage model, it explicitly operates on precise trace segments reflecting the target operation, which is challenging to perform when the leakage measurements are noisy. Besides, its attack performance may vary dramatically, as it relies on selecting a reference byte (and its corresponding leakages) to “collide” other bytes. A poor selection would lead to many bytes unrecoverable. These two facts make its real-world application problematic. This paper addresses these challenges by introducing a novel plaintext-based SCCA. We leverage the bijective relationship between plaintext and secret data, using plaintext as labels to train profiling models to depict leakages from varying operations. By comparing the leakage representations produced by the profiling model instead of the leakage segmentation itself, all secret key differences can be revealed simultaneously without processing leakage traces. Furthermore, we propose a novel error correction scheme to rectify false predictions further. Experimental results show that our approach significantly surpasses the state-of-the-art SCCA in both attack performance and computational complexity (e.g., training time reduced from approximately three hours to five minutes). These findings underscore our method's effectiveness and practicality in real-world attack scenarios.

Related Organizations
Keywords

Digital Security

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold